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Abstract

This paper considers the problem of making statistical inferences

about group judgments and group decisions using Qualitative Controlled

Feedback, from the Bayesian point of view. The qualitative controlled

feedback procedure was first introduced by Press in 1978 (JASA), for a

single question of interest. The procedure is first reviewed here

including the extension of the model to the multiple question case. We

develop a model for responses of the panel on each stage. Many questions

are treated simultaneously and an autoregressive model is developed for

explaining the responses of the group members as a function of the feed-

back. The errors are assumed to follow a matrix intraclass covariance

structure. Marginal and conditional posterior distributions of the

regression coefficient vector are found in both small and large samples.

The broadly defined generic family of multidimensional Student-t distri-

butions is found to play a major role in the results.
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1. Introduction

o

Group judgment formulation and decision making using qualitative

controlled feedback (QCF) was introduced in Press, 1978. The work was

extended to the multivariate case of many questions in Press (1979a). S

In this paper we carry the work further by adopting the Bayesian point

of view and developing the posterior distribution of the coefficient

vector that relates individual responses of broup members to explanatory

variables.

The methodology was originally conceived in order to study how the U.S.

Air Force might be reorganized. We will motivate the procedure, however, 0_.

in a different context.

Suppose, for example, a city planning bureau would like to resolve

some public policy issues that are of importance to the city in various 9-

ways. They would like to determine how to allocate the resources in their

budget so that "appropriate" funding is devoted to police, fire, and other

municipal services, consistent with environmental considerations, political

considerations, economic feasibility, engineering and scientific constraints,

and perhaps other factors as well. These factors affect most people in

some possibly indirect way, and no one person is likely to be knowledgable

in all related areas.

It is decided to adopt a QCF procedure to assist the policy makers in

generating the factors that argue for one allocation over another. A sample

of panelists is taken from the city population and the panel members are each

given a survey instrument that includes a battery of questions.

The survey instrument could be administered by mail, by telephone,

by on-line computer, or whatever. The data collection protocol of QCF

•7--
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requires that each panelist respond to the questions independently of all

other panelists, and without any panelists knowing the identity of any other

panelists. Thus, the social pressures of face-to-face confrontation in a

room, perhaps at the expense of logical reasoning, are avoided.

In applying a QCF procedure, each respondent is typically asked 
to

answer a set of basic questions. In addition, the subject is asked to

provide distinct reasons for each answer that will help justify the

subject's answers. He will usually also be asked to answer some sub-

sidiary questions that will serve to provide demographic and attitudinal

information about the degree of expertise of the subject, his likely

institutional biases, etc.

An intermediary is asked to collect all the answers. This person then

forms a merged composite of the reasons provided by the panel for the answer

to each question asked. This merging can be carried out with the aid of a

computer editor. That is, in some situations this step may be carried out

mechanically (if most reasons are listed in advance, panelists can check

them off and a computer can tally them). Reasons can be coded and classi-

fied into some intrinsically orthogonal set (many reasons are probably just 0

paraphrases of one another). The end product generated is a composite of

reasons corresponding to each pair of questions and answers.

The composites of reasons are now presented to each panelist in a simple

form (such as a checklist), Each panelist is then asked to answer the same

set of questions a second time, only now, the panelist is exposed to the

reasoning used by all other panelists. The numerical responses given by the

other panelists is not provided for any of the subjects, nor do they receive

...............................-- . ... .. ... .. .. . . . •.-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .." '"" - • ,"" ""'- " ' """ " " -'-"""'" . . " .. ' " '' "- """" "" ''"" ' " "" "" i' " " " u'-:- " " -|" '"" -
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any other data, such as sample group mean vectors. The composites of

reasons are the only data fed back. As a result, the second stage response

of a panelist is likely to differ from his first stage response only because

he feels he has ignored some arguments used by other panelists. Note that

panelists are not told the proportion of panelists who gave a particular

reason; a panelist does not have any basis for deciding how much to weight

each reason, in his own thinking, other than by adopting his own weighting

system according to his own perceptions of value and importance.

This procedure is repeated until the process stabilizes, in the sense

that respondents are not changing their responses very much from stage to

stage.

There is room, however, for manipulation of the outcome by a devious

intermediary who might misrepresent the composite fed back to the panel on

each stage. This effect can be minimized by using a group of intermediaries

to accomplish the task of forming a composite of reasons.

Earlier research involving group decision making and judgment formu-

lation, and the effects of social interaction pressures, is summarized in

Press, 1978. In Section 2 we develop a model for studying the relation-

ships between responses to the many questions, and the rationale the panel S

feels is most important to explain the answers. The model can also be used

for predicting the next round's responses (in many situations, for economic

or other reasons, it may be difficult or undesirable to carry out the process

for one more stage).

The multiple question model is treated in greater detail from a sampling

theory viewpoint in Press (1979a). The methodology was applied to study a

real problem in Press (1979c). Section 3 presents several distinct develop-

ments that provide methods for making Bayesian inferences useful for

. . . . . . . .. .. . . ~~~~ . . . . . . . .. . . . . . . . . . . . . .



4

predicting the next round's responses. Finally, Section 4 provides a

summary and conclusions.

2. Multiple Question Model

2.1 First Stage

Let z in(j) denote the numerical response of subject i, on stage

n, to question j; i = 1,2,...,N; j = 1,2,...,q. Let F denote the
n

totality of information obtained on stage n and fed back to each

panelist at the beginning of stage (n+l). Let F n ) denote the n-vector

(F.). Finally, let X:Nxr denote a regressor matrix of explanatory vari- P

ables observed for the N panelists (these are answers to subsidiary

questions).

For the first stage model we adopt a simple regression with uncor-

related errors (subjects respond independently on the first stage).

Accordingly, assume

z1 (j)Jx = X8(j) + u W.

E(uI ) 0, var[ul (j)] = oW(j)I N .

where:

z1 (j) [zll(J),...,ZNl(J)J', ul(J) = [ull(J),...,uNl(J)',

u i) denotes an error term, and o(j) denotes an rxl vector of .
il

unknown coefficients. For convenience, take

V C, [U(1),...,ul(q)], V' = [vl,...,vN ,
(Nxq) (NxI(N x ) (qN) (qxl) (qxl)

. , °
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and assume

*,i=j e

E(viv) =- 0, iqj :T:

if

(Nxq) (Nxl) (Nxl) (rxq) (rxl) (rxl)

the model may be written in the compact form

z = X B + V.: (1)

(Nxq) (Nxr) (rxq) (Nxq)
S

where:

E(V) = 0, cov~vi v.) - 0, i($i, var(v t) =

The model of course represents a classical multivariate regression. The

Gauss-Markov estimator of B is therefore

B- (xx) 'z . (2)

2.2 Feedback Stages (n z 2)

For later stages, beyond the first, the model must change. This is

because the composites of reasons fed back to each respondent cause their

responses to be mutually correlated. Since they all get the same feedback,

however, their responses on the next stage are likely to be similarly cor-

related (homogeneous, or intraclass correlation structure). Moreover,

their answers on stage two are likely to be related to their answers on

stage one. Adopt the autoregressive model
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(n-1 rj(n-2
-znj ERi(j)F [1 - ()) (x()+ F ~C) 3

where ~~ R(j eoe henme fdsinij)sn ivnb h ae

n-lE=I c( (j) [I 6( ,)i -l M (jn)() + Uin(J)' (3) "-5

where R n (j ) denotes the number of distinc:t reasons given by the panel "i.

(this is the number of reasons in the composite) for the answer to question S

(a)j, on stage n; 6 i(j) is unity or zero, depending upon whether or not

respondent i records reason a for his answer to question j, on stage

n; c('(j) is an unknown constant of proportionality (to be estimated);

and p ()) denotes the proportion of respondents who record reason a
n

for question j, on stage n (this will be interpreted as the weight or - "

importance the panel gives to this reason). Note that even though the panel P

members do not know p n j), it can nevertheless be used in our model since

the intermediary knows it or can compute it.

The model in eqn. (3) may be interpreted as follows. -.

AZ inJ) represents the change in response for subject i, on question j,

from stage (n-l) to stage (n). This change results from an incremental

effect attributable to each reason (linear combination of effects). If the -

subject gave that reason on the last stage, there is of course no effect,

while if he didn't give it, the effect is proportional to the importance

of the reason (as measured by the proportion of panelists who gave the

reason).

2.3 Error Structure (n z 2) o

Define

Uin= [Uin (1)• in(q)]'
(qxl)

..... . . .. .. .. .. .-. .... . . .
• . q . • . ° ° ° • .•_. •.... . ,. . . ... . . . . . . . . . .
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and assume

(1) E(u.n) = 0

in

(2) var(ui)

(qxq)

A n , itj,n=m

(qxq)
(3) cov(u in'Ujm). 0, nim

For compactness, let

ue
nn N•..n.'

(Nqxl)

Then, E(u ) = 0, and
n

z A

var(un ) = =
n n

(NqxNq) A n)

9 is seen to be a matrix intraclass covariance matrix. Some of its

n

properties are given, e.g., in Press, 1972, pp. 21, 48, 49. and in Press,

1979b. The assumption of equal diagonal blocks in fn means we are assuming

multivariate homoscedasticity. All off-diagonal elements of the qxq blocks

are assumed to be identical (A. We are therefore assuming that in many
n

situations it is reasonable to expect that the panel will be constituted with

members who are sufficiently homogeneous in background so that a pattern of

homogeneous correlation is reasonable.

9
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2.4 Transformations to Canonical Form

Let

Az. Az. (10 . 'Az. (q)]'i n i n i n
(qxl1

and assumne

Ca(j) = x' a (j) (4)

(l, r) (rxl)

where x. denotes the (rxl ) vector of explanatory variables for sub-

ject i, and a (j) denotes an (rxl) vector of unknown weights. For

compactness, let

cii)( (j)) (),

[R 1 (j).l)1

and

[Rn-i~)l nlj

so that

c-(j) = I9x!) a j)

where 9 denotes the direct product. We next ccmbine all the observable

explanatory data into one matrix. Define

win~j 0 i tin~j

[rR 1 (W-xl

where:

[(RR 0)

(a).....
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and define

W1 0

and

a(n-1) =[ ni'().
(h 1 -l)

where:

q
h rE R (j)

The model now becomes

Azi. Wi a(n-1) + U.n (5)

(qx1) (qh) (h 1 ) (q-1)

Combining all subjects, (5) becomes

(n'x) W n a (-)+ U (6)

(Nxl) (Nqxh )(h xl) (Nqxl)

where:

nZ (6zln...1Az~n)' W = (Wi "'-'NWn)

interacting over the n stages gives

z EZ -z W a + u ,(7)

nS

n-i
where for h r h.

j=1 .-

a (a ,...,a )
(hxl)
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p
Using eqn. (21) in eqn. (17), with p'(a,. O) pkO(o), gives the joint

posterior density

_ (2y+Nq+2)
2 ex

p(a,n 0 Iz*,w*) IjO l exp (-3 )trnol(H+2J) .

rFq,(6n ;JRJfo) (22)
r

The marginal posterior density of a is found by integrating (22)

with respect to sO  The integration is carried out by reference to

eqn. (21), using its normalizing constant. The result is

p(alz*,w*)
12J+(z*-w*a)(z*-w*a)' y+ '

F (6 y+' ;n ;JRJ(2J+H)- ) ' (23)
(r+)q*

V

where: H E (z*-w*a)(z*-w*a)'. If we identify M 2J, 2y E m-Nq-1, and

take R E 0, it is immediately seen that the result obtained in (18),

for the inverted Wishart prior, is a special case of eqn. (23). This .

result, however, has the advantage of being richer in parameters and can

therefore accommodate a much greater variety of types of subjective

information. Inferences about a, however, are more complicated, and

will require the use of zonal polynomial tables in order to evaluate the

hypergeometric functions in (23) (see James, 1974), The parameters of

the hypergeometric functions are selected so as to satisfy the block diagonal

structure of Q

. ........-..... .... .............................
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the elements of n that do lie in the main diagonal blocks are simul-

taneously constrained in all of their moments (by taking m large).

Such constraints may not always be desirable. For the general case,

an alternative prior for sl which is richer in parameters is recommended.

We propose such a prior below.

Generalized Prior Distribution
S

A generalized family of Wishart type distributions was introduced by

Roux, 1971. The generalization includes hypergeometric functions of

matrix argument. A form of the associated density which widens the para-

meter spaces is given (for a general pds matrix X) by

(g+l)
Y 2f() = clXi exp{-tr(Ji)} r*F q*(;n;JRJX) , (20)

for X:qxq, X > 0, 6 -- (61 ..,6r. )' n (nl ,...,n .)°, J:qxq, R:qxq,

J > 0, R > 0, and rF .() denotes the generalized hypergeometric
r q*

function of matrix argument (see Constantine, 1963). The normalizing

constant is given by

C lily
rq(y)(r*+l)Fq* (6,y;n;JR)

where r y) denotes a q-dimensional gamma function. The parametersq
(Oisn), 11,...,r*, j=l,...,q*, are restricted to take those values .

for which f(X) is positive.

Now let Q0 -i replace q by Nq (the dimension of Q), and

transform the -density in (20) to yield the generalized inverted Wishart

density

yo0 ) . c exp{-tr(Jill0  r*Fq(6l;n;JRJlo) (21)
. . . . .+ ..
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Then,

M1  M2
1 m-2Nq-2 2E( ) m-2Nq-2

and E( O) = 0 for all elements of C not in the block diagonal elements.

Moreover, if o (W ), for all (a,$) not in the block diagonal

elements,

m mcz"mBB -.-,'

var(wB) (m-2Nq-I)(m-2Nq-2)(m-2Nq-4)

3i
where M E (m C) Note that var(w C) is of order m3; that is, var(w )

goes to zero with increasing m . We can always choose m large enough

so that all elements off the block diagonal elements of 5O  are centered

at zero, with very small variance. Note from eqn. (19) that var(alz*,w*)

goes to zero with increasing v* (which is linear in m). By selecting

(MI,M 2) appropriately, and choosing m sufficiently large this prior

distribution will be sufficiently rich to accommodate many classes of

subjective information.

This type of prior is not recommended for the general case, since

the structure of the prior distribution is too restrictive. Our reasoning

is that although elements of a not in the blocks on the main diagonal

are centered at zero with arbitrarily small variance, because there are p

only two parameters in the inverted Wishart distribution, viz. (M,m),

*The restrictiveness of the structural form of the Inverted Wishart

distribution has already been noted by Rothenberg, 1963, in a different
context (see References).

. --..

.-.. '.~~~~...;.. -... _, ,-.,."............,-, , -, "' _ , ,
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where:

0[* E(w*'M w*Y1 (w*'M z*), v* m-Nq-h

Ql (w* M w )V* E' B* +Z*elmIz*-a*sW*,MlW*a*.

That is, a follows an h-dimensional Student t-density with mean az*,

and v* degrees of freedom. Then,

E(alz*.w*) a * =(w*SM 1w *)- (w*M -z*)

var(alz*,w*) =( V*) --

= ~ )(w*'Mi W*)1l (19)

Discussion of Prior

The mean and variance of the inverted Iishart distribution are well .

known (see e.g. Press, 1972, p. 111). Therefore

E(%) =
0 m-.2Nq-2

But if we subjectively believe that

=0

0

we should take

(Ni0

N1 M 0, M2  0.

0 %M 2
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and p'(a,n) denotes the prior density. Note that we are ignoring the

intraclass structure of $2 at this point.

For the prior density, assume p'(ajz0) =pi(a)pjU(%), and

pj(a) constant,

pl)m exp {(-11)trs21  } M

where (mM) are assumed to be known hyperparameters, M > 0.

The joint posterior density becomes

P(a,s201z*,w*) 1x (-1 )trnf(M+H

In f?0 this expression is the kernal of an inverted Wishart distribution

so it is readily integrated to give the marginal density

p(aiz*,w*)1

or

p~alzw*) l+(w*a..z*)'M'l(w*a-z*)} N2

Completing the square in a gives

p(alz*,w*) 1 ~ h(18)

V*+(-,m*'Q-(a-,z*) 2

............................... .. .. .......
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Remark (2).:

The large sample Bayesian result shows that the elements of the

regression coefficient vector a are, for large N, jointly normally

distributed, so that inferences about particular coefficients are readily

made.

Remark (3):

The large sample Bayesian result just found is meaningful when the S

number of subjects on the panel is large; the number of feedback stages

may still be small.

"t

3.4 Small Samples

To obtain a Bayesian result useful in small or moderate samples we

adopt a different point of view than that used in subsection 3.3. Our

approach now is to first ignore the (possibly) intraclass covariance .

structure in the likelihood function, but to recapture the structure in

the prior distribution.

We begin with eqn. (14),

(z*Jw*,a,n O)0 N(w*a,n0). (14)

Thus, the posterior distribution of (a,n) is

plajolz*,w*) p 'n)

p~'Iexp 1  trH 1

where

H (z-wa)(z*-w*a)'

| %" ° -

. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .
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To simplify, complete the square in a to get .

p(ali, ) exp - )[(a-a)'F(a-a)-

where:

N N
F- b, b z, F- z w

2J 2 3 Jv

That is, a posteriori, in large samples,

a 'N(aF) (16)

The only unfinished item remaining in this large sample approximation

is to show that the latent roots of *'G - go to zero with increasing

sample size. The matrix ,'(r. ), where -"
1j

rij (w~a-z ) ' G
- (w*.a-z_*) .

But

w* (w*' ... ,w*l) : ( rO  g )w
(Nqxh) 1 WN q q

(NxN)

where w only changes in dimension with increasing N. But r is an

orthogonal matrix each of whose elements is of order N . So r . is

of order N- . So its latent roots must vanish as N -.

Remark (1):

We note that since Ei = r + (N-l)A, as N gets large, EI becomes

very large, so z* is less and less informative as N -. As a result,

ignoring this observation is no great loss in large samples.

I
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Large Sample Approximation

Let - (wa-z,..",wa-z*). Then, eqn. (15) becomes

p(ali.w) IG + W'1 II + 4'G-01- /2 "P

or

p(aji,) £ exp {(- ) logIN_ + ,'G'I$j :. -.

2 N-1

Let (Al,...,AN_ ) denote the latent roots of o'G- 4, and let

D = diag. (Al,. .,AN~l). Then

p(ai,w) exp{- . logI IN1 + DX-

N-1
= expt- log n (l+A.)

(N-1

- exp Z log (l+Xi)"

1 -- °

It will be shown shortly that X. decreases with sample size, N. Thus,
1

for N sufficiently large, IkXi 1 <<l, so that log (l+X) X .i  Then, -

N-1

p(aji, ) exp {Xv~A2 i''T'

= exp 2i tr(.oG }

= exp E (w.a-z.'G1(w a-zj) .
- j 2-

Each term in the exponent is a quadratic form in a. Combining terms gives

2 J

N z* l *N -".' l'

Z(. ,. (.. . . ) a + ( .- -. . ,,)•-

....................................
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where:

pi (a) constant,

p_( ) I o e , > 0  .!
I2l 22

That is, the prior density of a is vague, and the prior density of E2

is inverted Wishart. Note that (G,nO ) are assumed to be known hyper-

parameters. The posterior density now becomes

ID
1 _ -( )trZ21 (B+G)

p(a,r 2Iz,w) 1NeI 21 : --

The marginal posterior density of a is found by integrating the joint

density of (a,12) with respect to E2. Because of the known form of the

inverted Wishart density, ve readily effect the required integration and

find

p(ai,i) N v/2 (

j=2 J J~ J J

where v = N + n,- q - 2. The posterior density in eqn. (15) is in the

matrix-T family, but is quite complicated analytically. It could always

be evaluated numeri-cally, of course, but we seek instead a large sample

approximation. An alternative approach will be developed for obtaining

simple Bayesian results in small samples.

T* - .,-.. 
.*.......x.X * < . * .* *

:':-.......'._~~~~. ..... .. - .. .. . .,-'.. . -. "-. . . . .."" ' - ,
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(z~I~,aE1) N(w~a,r1)

*(z*,...a z*) are independent and

Ij 2

for all j=2,. .. ,N. A fundamental difficulty at this point is that E

depends on the sample size N (since r1= + (N-1)A). To circumvent

this difficulty we will seek a Bayesian solution to our problem which

ignores one data point, namely, zj', and then we will seek a large sample

solution, so that the loss of the one data point will be irrelevant.

Accordingly, we consider the joint posterior density

P~aE2I,1) p'(a,r) -)trr 2 B

21' (-1)/2e

where p'(a,E 2  denotes the joint pri or density of a and 2

N
B F Iw'Ma -z')(w~a -fl

j=2 ' ~ '

and

z (z*,..z)

It is interesting to note that the sample covariance among the (z*...,z*)

vectors follows a non-central Wishart distribution.

Adopt the prior density

P'(aE) p,'(a) p( 2

....................................-... . . . .

. . .. . .. . . . . . .. . . . . .
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where

A E

The posterior density of a is found by first reducing (13) to canonical

forms; then adopting a prior for the canonical form parameters, and

finally applying Bayes theorem.

Define the orthogonal matrix r = r0 9 1q9 where r0  denotes an 0

orthogonal matrix of order N whose first row has equal elements. Then

it is straightforward to check (see Press, 1979b, Theorem 5) that if

SO  is block diagonal of the form

0

= £ + (N-l)A, g2 = E-A. Accordingly, define z* = rz, w* = rw Then,

(z* w*,a , o) N(w*a,n ) (14)

We now view eqn. (14) as the canonical form of the problem and adopt

S31 ,2,a) as the canonical parameter set. Equivalently, if

"--- 5 ,z'w * E:

(Nqxl) (lxq) (Ixq) (Nqxh) (hxq) (hxq) .

the canonical problem is the following:

9:-
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That is, conditional on n, a posteriori , and adopting a vague prior

on a, a is normally distributed, centered at the MLE, with precision

matrix (WIC W).

We remark in passing that a(Q) is the same estimator found from

.- a frequentist point of view in Press (1979a).

3.2 Large Sample Estimator

One approximate large sample Bayesian estimator of a may be found

(when S is unknown) by using the result obtained conditional on Q,

and then replacing i by a consistent estimator. This approach follows

the spirit used in the frequentist analysis.

Suppose is a consistent estimator of Q (for unknown Q). Then,

the approximate posterior distribution of a is
S

(ajz,w,s1) N [a (n ) , ( W :i:+

* A consistent estimator, P, is developed in Press, 1979a. Thus, in
p

large samples,

a ai (&I ,

and a is approximately normally distributed.

3.3 Marginal Distribution of a

In this subsection we find Bayesian estimators based upon the marginal

posterior distribution of a. The likelihood in (9) is equivalent to

(zw,a,n) ' N(Wa,n), (13) p

3-
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3.1 Known Covariance Matrix

From (7) and (8) it follows that under the assumption of normality on u,

the density of the response vector (likelihood funct. P) given the parameters

and explanatory variables, is

-1i 1 -(z-wla) 'a i  (z-Wa)
p(zlW,aQ) ( H e (9)

Hence, if we adopt a vague prior for a (assuming n is known), its density .

is given by

p(a) constant,

so that the posterior density is given (from Bayes theorem) by

P(a&z , Wn)  e- (z-Wa)' f-l(z-Wa) 00)
.DO

Note that we are using the common Bayesian convention of using the symbol

p(-) to denote a generic density -- the densities differ from one another

according to the arguments and conditioning variables used.

Define the generalized least squares (and maximum likelihood)

estimator .

(Q) = (w 'S- w) I  w 's - z . (1)

Completing the square in the exponent in (10) shows that I

* p(aIz,w,s) e-

so that

(alz,w,n) W- N[i(1), (W(f'w) 1) . (12)

N~i~n' Wn
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and
n.

W =(W 2 ,...,W), u u..
(Nqxh) (Nqxl) j=2 J

m The transformed error vector in (7) satisfies

Z% A
E(u) O, var(u) = = ",(8)

i.6
A z

K where

n-I n-I
r (zE)( A E (A)

j=2 J  j=2 A

3. Bayesian Inference

In this section we examine the unknown coefficient vector in the a

model defined by (7) and (8), from the Bayesian point of view. Four

different approaches will be taken. First we will examine the coefficient

vector conditional on the error covariance matrix. Then, we will develop

an approximate conditional Bayesian estimator which is useful when samples

are large. This approach ignores the intraclass structure of the covariance

matrix and is useful for cases where the intraclass structure cannot be

assumed. Next, in subsection 3,we will use the intraclass covariance

structure when we develop the marginal posterior distribution of the coef-

ficients. The result is complicated, and so a large sample solution is found.

In the final subsection we develop a result which is useful in small

sampl es.

....................-... . . . . . . . . . .

S. . .. . . .
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4. Conclusions and Summary

The qualitative controlled feedback process of forming group judgments

and making decisions has been examined from a Bayesian viewpoint. The

group responses'to many questionswas modeled as an autoregressive process

with coefficient vector a.

It was shown that if the error -ovariance matrix, 0, is known, the

posterior distribution of a is normal, and centered at the generalized

LSE. In large samples, if a is unknown, a consistent estimator may be

used to make conditional inferences about a.

Bayesian inferences can also be made marginally, without reference

to n. Assuming intraclass covariance structure, the marginal posterior

_ distribution of a was shown to be, approximately, a complicated member

of the matrix T family of distributions. We developed a normal distri-

bution approximation which is very useful in large samples, however. For

small sample situations involving the intraclass covariance structured

situation we developed a posterior multivariate Student t-density for a.

This result although useful for many situations is somewhat restrictive

in the types of prior information it will a~commodate. A more general

result was obtained using generalized inverted Wishart distribution

priors. The result is more complicated to use, however.

Finally, note that the entire QCF process is subjective in nature.

It is therefore not surprising that inferences about the relationship

between the responses of the panel members, and their individual charac-

teristics and judgmental behavior regarding the reasons other panelists

give, would depend heavily upon the nature and quantity of the prior

information available.
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